Deflated Hermitian Lanczos Methods for Multiple Right-Hand Sides

نویسندگان

  • Abdou M. Abdel-Rehim
  • Ronald B. Morgan
  • Dywayne Nicely
  • Walter Wilcox
چکیده

A deflated and restarted Lanczos algorithm to solve hermitian linear systems, and at the same time compute eigenvalues and eigenvectors for application to multiple right-hand sides, is described. For the first right-hand side, eigenvectors with small eigenvalues are computed while simultaneously solving the linear system. Two versions of this algorithm are given. The first is called Lan-DR and is based on conjugate gradient (CG) implementation of the Lanczos algorithm. This version will be optimal for the hermitian positive definite case. The second version is called MinRes-DR and is based on the minimum residual (MinRes) implementation of Lanczos algorithm. This version is optimal for indefinite hermitian systems where the CG algorithm is subject to instabilities. For additional right-hand sides, we project over the calculated eigenvectors to speed up convergence. The algorithms used for subsequent right-hand sides are called D-CG and D-MinRes respectively. After some introductory examples are given, we show tests for the case of Wilson fermions at kappa critical. A considerable speed up in the convergence is observed compared to unmodified CG and MinRes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deflated and Restarted Symmetric Lanczos Methods for Eigenvalues and Linear Equations with Multiple Right-Hand Sides

A deflated restarted Lanczos algorithm is given for both solving symmetric linear equations and computing eigenvalues and eigenvectors. The restarting limits the storage so that finding eigenvectors is practical. Meanwhile, the deflating from the presence of the eigenvectors allows the linear equations to generally have good convergence in spite of the restarting. Some reorthogonalization is ne...

متن کامل

ar X iv : 0 70 7 . 05 02 v 1 [ m at h - ph ] 3 J ul 2 00 7 DEFLATED GMRES FOR SYSTEMS WITH MULTIPLE SHIFTS AND MULTIPLE RIGHT - HAND SIDES

We consider solution of multiply shifted systems of nonsymmetric linear equations, possibly also with multiple right-hand sides. First, for a single right-hand side, the matrix is shifted by several multiples of the identity. Such problems arise in a number of applications, including lattice quantum chromodynamics where the matrices are complex and non-Hermitian. Some Krylov iterative methods s...

متن کامل

Deflated Gmres for Systems with Multiple Shifts and Multiple Right-hand Sides∗

We consider solution of multiply shifted systems of nonsymmetric linear equations, possibly also with multiple right-hand sides. First, for a single right-hand side, the matrix is shifted by several multiples of the identity. Such problems arise in a number of applications, including lattice quantum chromodynamics where the matrices are complex and non-Hermitian. Some Krylov iterative methods s...

متن کامل

Extending the eigCG algorithm to nonsymmetric Lanczos for linear systems with multiple right-hand sides

The technique that was used to build the eigCG algorithm for sparse symmetric linear systems is extended to the nonsymmetric case using the BiCG algorithm. We show that, similarly to the symmetric case, we can build an algorithm that is capable of computing a few smallest magnitude eigenvalues and their corresponding left and right eigenvectors of a nonsymmetric matrix using only a small window...

متن کامل

Deflation of Eigenvalues for Iterative Methods in Lattice QCD

Work on generalizing the deflated, restarted GMRES algorithm, useful in lattice studies using stochastic noise methods, is reported. We first show how the multi-mass extension of deflated GMRES can be implemented. We then give a deflated GMRES method that can be used on multiple right-hand sides of Ax = b in an efficient manner. We also discuss and give numerical results on the possibilty of co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008